The way energy from fuel gets transformed into electricity forms the working of a power plant. In a thermal power plant a steamturbine is rotated with help of high pressure and high temperature steam and this rotation is transferred to a generator to produce electricity.
In the nuclear plant field, steam generatorrefers to a specific type of large heat exchanger used in a pressurized water reactor (PWR) to thermally connect the primary (reactor plant) and secondary (steam plant) systems, which generates steam. In a nuclear reactor called a boiling water reactor(BWR), water is boiled to generate steam directly in the reactor itself and there are no units called steam generators.
In some industrial settings, there can also be steam-producing heat exchangers called heat recovery steam generators (HRSG) which utilize heat from some industrial process, most commonly utilizing hot exhaust from a gas turbine. The steam generating boiler has to produce steam at the high purity, pressure and temperature required for the steam turbine that drives the electrical generator.
Geothermal plants need no boiler since they use naturally occurring steam sources. Heat exchangers may be used where the geothermal steam is very corrosive or contains excessive suspended solids.
A fossil fuel steam generator includes aneconomizer, a steam drum, and the furnacewith its steam generating tubes and superheater coils. Necessary safety valvesare located at suitable points to relieve excessive boiler pressure. The air and flue gas path equipment include: forced draft (FD)fan, air preheater (AP), boiler furnace, induced draft (ID) fan, fly ash collectors (electrostatic precipitator or baghouse) and the flue gas stack
PRINCIPLE OPERATION OF STEAM POWER PLANT
Energy absorption from steam
When turbine blades get rotated by high pressure high temperature steam, the steam loses its energy. This in turn will result in a low pressure and low temperature steam at the outlet of the turbine. Here steam is expanded till saturation point is reached. Since there is no heat addition or removal from the steam, ideally entropy of the steam remains same. This change is depicted in the following p-v and T-s diagrams. If we can bring this low pressure, low temperature steam back to its original state, then we can produce electricity continuously.
Use of Condenser
Compressing a fluid which is in gaseous state requires a huge amount of energy,so before compressing the fluid it should be converted into liquid state. A condenser is used for this purpose, which rejects heat to the surrounding and converts steam into liquid. Ideally there will not be any pressure change during this heat rejection process, since the fluid is free to expand in a condenser.
Pump
At exit of the condenser fluid is in liquid state, so we can use a pump to raise the pressure.During this process the volume and temperature (2-3 deg.C rise)of fluid hardly changes, since it is in liquid state. Now the fluid has regained its original pressure.
Heat Addition in Boiler & Rankine Cycle
Here external heat is added to the fluid in order to bring fluid back to its original temperature. This heat is added through a heat exchanger called a boiler. Here the pressure of the fluid remains the same, since it is free to expand in heat exchanger tubes. Temperature rises and liquid gets transformed to vapor and regains its original temperature. This completes the thermodynamic cycle of a thermal power plant, called Rankine Cycle. This cycle can be repeated and continuous power production is possible.
Condenser Heat Rejection - Cooling Tower
In order to reject heat from the condenser a colder liquid should make contact with it. In a thermal power plant continuous supply of cold liquid is produced with the help of a cooling tower. Cold fluid from the cooling tower absorbs heat from a condenser and gets heated, this heat is rejected to the atmosphere via natural convection with the help of a cooling tower.
Boiler furnace for Heat Addition
Heat is added to the boiler with help of a boiler furnace. Here fuel reacts with air and produces heat. In a thermal power plant, the fuel can be either coal or nuclear. When coal is used as a fuel it produces a lot of pollutants which have to be removed before ejecting to the surroundings. This is done using a series of steps, the most important of them is an electro static precipitator (ESP) which removes ash particles from the exhaust. Now much cleaner exhaust is ejected into the atmosphere via a stack.
TURBINE
A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor.
No comments:
Post a Comment